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1. Introduction

Cylindrical bending problem is one of the simplest problems of laminated plates [1]. Pagano [2]
first derived an exact static three-dimensional (3-D) solution of cross-ply laminates subject to
cylindrical bending. He further presented an exact solution of angle-ply laminates [3]. Pagano’s
two exact solutions are only restricted to a laminate where edges are simply supported. Studies on
other type boundary conditions basically based on various plate theories are carried out, and
significant achievements have been made recently [4–6].

Differential quadrature method (DQM) has been proved to be very effective in solving
differential equations governing beam/plate/shell deformations and vibrations [7–9]. On the other
hand, the state-space method (SSM) is very effective in analyzing laminated structures [10–13].
However, exact solutions are available only for simply supported conditions. To overcome this
difficulty, Chen et al. [14] recently developed a semi-analytical method combining DQM and SSM
together and successfully analyzed the free vibration of sandwich beams. The method allows us to
deal with different boundary conditions exactly that the Saint-Venant principle becomes
unnecessary in the analysis. In this paper, the method is extended to analyze the free vibration of
cross-ply laminates in cylindrical bending. The results presented here are believed to be valuable,
especially those for thick laminates with non-simply supported conditions.

2. Basic elasticity formulations

As in Pagano [2], we consider an N-layered cross-ply laminate under the assumption of
cylindrical bending (Fig. 1). In this case, we have only two non-zero displacements u and w; in x

and z directions, respectively, which are independent of the co-ordinate y: The constitutive
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relations for a cross-ply laminate for cylindrical bending are
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and txy ¼ tyz ¼ 0; where cij are the elastic constants, and si and tij are the normal and shear stress
components, respectively. The equations of motion are
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where r is the mass density.
Following the routine procedure of SSM [10,11], the following state equation can be established

from Eqs. (1) and (2):
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where a ¼ �c11 þ c2
13=c33 � sz; u; w and txz are termed as basic variables, from which the two

induced variables can be determined as

sx ¼
c13

c33
sz � a

@u

@x
; sy ¼

c23

c33
sz þ c12 �

c23c13

c33

� �
@u

@x
: ð4Þ
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Fig. 1. A laminated plate in cylindrical bending.
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In the regime of 3-D elasticity, the typical boundary conditions can be expressed as

simply supported ðSÞ : sx ¼ w ¼ 0;

clamped ðCÞ : u ¼ w ¼ 0;

free ðFÞ : sx ¼ txz ¼ 0;

ð5Þ

at x ¼ 0 or l:

3. Exact solution

An exact solution for simply supported boundary conditions can be obtained, as shown by
many researchers [1,2,11,15]. To show the solving procedure of SSM, we briefly review the
analysis here with particular dimensionless notations. We assume

sz

u

w

txz

8>>><
>>>:

9>>>=
>>>;

¼

�c
ð1Þ
55 %szðzÞ sinðnpxÞ

h %uðzÞ cosðnpxÞ

h %wðzÞ sinðnpxÞ

c
ð1Þ
55 %txzðzÞ cosðnpxÞ

8>>>><
>>>>:

9>>>>=
>>>>;

expðiotÞ; ð6Þ

where o is the circular frequency, z ¼ z=h and x ¼ x=l are the dimensionless co-ordinates, n is an
integer, and c

ð1Þ
55 represents the elastic constant of the first layer (the bottom layer). It is readily

shown that the simply supported conditions in Eq. (5) have been satisfied identically. The
substitution of Eq. (6) into Eq. (3) yields

d

dz
VðzÞ ¼ AVðzÞ; ð7Þ

where VðzÞ ¼ ½ %szðzÞ; %uðzÞ; %wðzÞ; %txzðzÞ�T; and the constant coefficient matrix A can be easily
obtained, which is omitted here for brevity. The solution of VðzÞ in Eq. (7) can be obtained as

VðzÞ ¼ exp½Aðz� zi�1Þ�Vðzi�1Þ; ðzi�1pzpzi; i ¼ 1; 2;y;NÞ; ð8Þ

where z0 ¼ 0; zi ¼
Pi

j¼1 hj=h; and hi is the thickness of the ith layer. Because of the continuity
conditions at each interface, we obtain from Eq. (8)

Vð1Þ ¼ TVð0Þ; ð9Þ

where T ¼
Q1

j¼N exp ½Aðzj � zj�1Þ� is known as the global transfer matrix. After applying the
tractions-free boundary conditions at the upper and lower surfaces, i.e., at z ¼ 1 and 0;
respectively, one can derive the condition

T12 T13

T42 T43

�����
����� ¼ 0; ð10Þ

where Tij are elements of the matrix T; from which one can compute the natural frequency of the
laminates.

It is interesting to mention that if we replace sinðnpxÞ by cosðnpxÞ and vice versa in Eq. (6), an
exact solution can be similarly obtained. In this case, the edge boundary condition corresponds to
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the so-called guided [16] (or rigidly slipping or rigidly smooth contact) condition, i.e.,

txz ¼ u ¼ 0 at x ¼ 0; l: ð11Þ

4. The semi-analytical method

For a laminate with other boundary conditions, say clamped or free boundary conditions, it is
generally difficult to obtain an exact solution to Eq. (3). A semi-analytical solution utilizing the
principle of differential quadrature was recently proposed in Ref. [14]. In this method, the nth
order partial derivative of any continuous function f ðxÞ at a given point xi is approximated as a
linear sum of weighted function values at all of the discrete points in the domain of x:

@nf ðxÞ
@xn

����
x¼xi

¼
XM
j¼1

g
ðnÞ
ij f ðxjÞ ðn ¼ 1; 2;y;M � 1; i ¼ 1; 2;y;MÞ; ð12Þ

where M is the number of discrete points, g
ðnÞ
ij are weight coefficients depending on xi ði ¼

1; 2;y;MÞ only, and the corresponding expressions can be found in Ref. [17].
By virtue of the rule in Eq. (12), we obtain the following discrete forms of Eqs. (3) and (4), with

respect to the variable x:
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where i ¼ 1; 2;y;M; O ¼ ho
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1Þ=c

ð1Þ
55

q
; rð1Þ is the mass density of the first layer, s ¼ h=l is the

thickness-to-span ratio, and

Zi ¼ szðz; xiÞ=c
ð1Þ
55 ; Ui ¼ uðz; xiÞ=h; Wi ¼ wðz; xiÞ=h;

Ti ¼ txzðz; xiÞ=c
ð1Þ
55 ; Xi ¼ sxðz; xiÞ=c

ð1Þ
55 ; Yi ¼ syðz; xiÞ=c

ð1Þ
55 ð15Þ

in which xi are the sampling point co-ordinates determined by

xi ¼
1 � cos½ði � 1Þp=ðM � 1Þ�

2
ði ¼ 1; 2;y;MÞ: ð16Þ

These points are known as the Chebyshev–Gauss–Lobatto points [7].
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At this stage, we have derived a discrete form of the state equation, as shown in Eq. (13).
However, for a practical problem, one should take account of the edge boundary conditions
before solving it. To illustrate the idea, we consider, for instance, a cantilever laminate clamped at
x ¼ 0 and free at x ¼ 1:

U1 ¼ W1 ¼ XM ¼ TM ¼ 0: ð17Þ

From the third condition in Eq. (17) and the first equation in Eq. (14), we have

ZM ¼
c33a

c13c
ð1Þ
55

s
XM
j¼1

g
ð1Þ
MjUj: ð18Þ

Then we can derive from Eq. (13) the final form of discrete state equation:
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which can be rewritten in the matrix form

dVd

dz
¼ AdVd ; ð20Þ

where Vd ¼ ½Z1;Z2;y;ZM�1;U2;U3;y;UM ;W2;W3;y;WM ;T1;T2;y;TM�1�T is the discrete
state vector, Ad is the coefficient matrix whose elements can be obtained from Eq. (19) easily.
Similar to the derivation in the last section, we can arrive at

Vd ð1Þ ¼ TdVdð0Þ; ð21Þ

where Td ¼
Q1

j¼N exp½Adðzj � zj�1Þ� is the global transfer matrix.
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For free vibration problem, both the upper and lower surfaces are traction free; thus the
frequency equation can be obtained from Eq. (21) as follows:

S1;M ? ? S1;3M�3

^ ^

SM�1;M ? ? SM�1;3M�3

S3M�2;M ? ? S3M�2;3M�3

^ ^

S4M�4;M ? ? S4M�4;3 M�3

��������������

��������������

¼ 0; ð22Þ

where Sk;l is the element of Td :

5. Numerical investigations

The convergence characteristics of the semi-analytical method described above are checked.
The first example we consider is the free vibration of a simply supported (S-S) laminate, for which
the exact frequencies are calculated from Eq. (10). The following typical material properties are
adopted:

EL=ET ¼ 25; GLT=ET ¼ 0:5; GTT=ET ¼ 0:2; nLT ¼ nTT ¼ 0:25; ð23Þ

where E is Young’s modulus, G the shear modulus, n the Poisson ratio and subscripts L and T
indicate directions parallel and perpendicular to the fibers respectively. For all cases to be
considered, each layer involved in the N-layered laminate is considered to have an equal thickness
h=N: In this paper, the stacking sequence is always from the top ðz ¼ 1Þ to bottom ðz ¼ 0Þ; and the
notation system by Whitney [1] is adopted.

For a moderately thick laminate with s ¼ 0:1; Table 1 compares the lowest dimensionless
frequencies o� ¼ oh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=GLT

p
obtained by different methods. Among them, D2D and M2D are

the generalized displacement-based and generalized mixed-based plate theories, respectively, and
the followed numbers indicate the terms associated with higher order displacements or shear
stresses involved in these two plate theories [6]. The 3-D results are also directly cited from
Ref. [6], calculated by the transfer matrix method [15] that is similar to that described in Section 3
of this paper. It is found that all the results calculated from Eq. (10) are identical to Messina’s 3-D
solutions [6], except for the stacking sequence ½ð0=90Þ30

	
1 �5: However, our semi-analytical results

always agree well with that obtained from Eq. (10). In particular, when the number of sampling
points is taken as M ¼ 7; the results are almost identical with the exact results. In Table 1 and
hereafter, the relative error is defined as follows:

e% ¼
ðo� � o�0 Þ

o�0

 100; ð24Þ

where o�0 corresponds to the frequency parameter calculated from Eq. (10). Even for very thick
laminate with s ¼ 0:3 and 0:4; the semi-analytical method provides a very good estimate of the
lowest frequencies, as shown in Table 2.
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Table 3 presents the lowest frequency parameter o� of a cross-ply laminate with the stacking
sequence ½0=90=0=90	� for different wave numbers n: It should be noted that the wave number n is
not involved in the formulations of the semi-analytical method. However, through the calculation
of vibration modes, it is easy to determine the mode number (exact theory) the frequency
(the semi-analytical method) corresponds to. It can be seen that, the higher the mode number is,
the more is the number of sampling points required to get reasonable results. For example, as
listed in Table 3, the frequency for n ¼ 6 obtained by our method has a relative error of �1:76%

ARTICLE IN PRESS

Table 1

Lowest frequency parameters o� ¼ oh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=GLT

p
; for different stacking sequences of S-S laminate in cylindrical bending

ðs ¼ 0:1Þ

Method ½0=90	� e% ½0=90=0	� e% ½0=90=0=90	� e%

D2D, 8 0.0816460 �0.06 0.147297 0.72 0.110153 0.63

M2D, 11 0.0816126 �0.10 0.146203 �0.03 0.109414 �0.04

Semi, M

5 0.0813411 �0.43 0.145721 �0.36 0.109036 �0.39

6 0.0816722 �0.03 0.146221 �0.02 0.109439 �0.02

7 0.0816958 0.00 0.146249 0.00 0.109462 0.00

Eq. (10) 0.0816952 – 0.146248 – 0.109461 –

3-D 0.0816952 – 0.146248 – 0.109461 –

½ð0=90Þ20
	� e% ½0=90	�6 e% ½ð0=90Þ30

	
1 �5 e%

D2D, 8 0.141136 0.89 0.122924 2.98 0.134013

M2D, 11 0.139862 �0.02 0.119337 �0.03 0.129748

Semi, M

5 0.139372 �0.37 0.118902 �0.39 0.127260 �0.39

6 0.139865 �0.02 0.119344 �0.02 0.127731 �0.02

7 0.139892 0.00 0.119369 0.00 0.127757 0.00

Eq. (10) 0.139891 – 0.119368 – 0.127756 –

3-D 0.139891 – 0.119368 – 0.129758

Table 2

Lowest frequency parameters o� ¼ oh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=GLT

p
; for different stacking sequences of S-S very thick laminate in

cylindrical bending

½0=90	� e% ½0=90=0	� e% ½0=90=0=90	� e% ½ð0=90Þ20
	� e% ½0=90	�6 e% ½ð0=90Þ30

	
1 �5 e%

Semi, M ðs ¼ 0:3Þ

5 0.523172 �0.34 0.646479 �0.28 0.541361 �0.30 0.627125 �0.28 0.579050 �0.28 0.614362 �0.28

6 0.524858 �0.02 0.648217 �0.01 0.542889 �0.01 0.628768 �0.01 0.580606 �0.01 0.616009 �0.01

Eq. (10) 0.524948 – 0.648310 – 0.542970 – 0.628856 – 0.580689 – 0.616097 –

Semi, M ðs ¼ 0:4Þ

5 0.782482 �0.31 0.914114 �0.27 0.777475 �0.29 0.877888 �0.27 0.814024 �0.27 0.863234 �0.27

6 0.784787 �0.02 0.916508 �0.01 0.779594 �0.01 0.880118 �0.01 0.816095 �0.01 0.865464 �0.01

Eq. (10) 0.784910 – 0.916633 – 0.779708 – 0.880235 – 0.816199 – 0.865538 –
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when compared to the exact one. However, if we take M ¼ 14; the result will be 1.27431, with the
error being 0.1% only.

Tables 4 and 5 show the lowest frequency parameters o� of C-C and C-F laminates respectively
for several different thickness-to-span ratios. For comparison purpose, results calculated by the
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Table 3

Lowest frequency parameters, o�; for S-S laminate of ½0=90=0=90	� ðs ¼ 0:1Þ

n 3-D Eq. (10) D2D,7 e% M2D,7 e% Semi, 12 e%

1 0.109461 0.109461 0.112068 0.7 0.109239 �0.2 0.109461 0.00

2 0.316561 0.316561 0.321023 1.4 0.315550 �0.3 0.316572 0.00

3 0.542971 0.542970 0.551860 1.6 0.541454 �0.3 0.542968 0.00

4 0.779708 0.779708 0.792924 1.7 0.778136 �0.2 0.779632 �0.01

5 1.02465 1.02465 1.04218 1.7 1.02333 �0.1 1.02682 0.21

6 1.27545 1.27545 1.29749 1.7 1.27461 �0.1 1.25305 �1.76

Table 4

Lowest frequency parameters, o�; for C-C laminate ðM ¼ 8Þ

s ½0=90	� ½0=90=0	� ½0=90=0=90	� ½ð0=90Þ20
	� ½0=90	�6 ½ð0=90Þ30

	
1 �5

0.01 0.00197652 0.00439808 0.00298711 0.00402442 0.00323169 0.00348278

(0.00198100) (0.00449054) (0.00302247) (0.00409065) (0.00326793) (0.00352398)

0.05 0.0458420 0.0791464 0.0601057 0.0758616 0.0653316 0.0698304

(0.0495249) (0.112264) (0.0755619) (0.102266) (0.0816982) (0.0880995)

0.1 0.153462 0.205606 0.169593 0.200086 0.181942 0.193064

(0.198100) (0.449054) (0.302247) (0.409065) (0.326793) (0.352398)

0.2 0.417144 0.474495 0.410782 0.455344 0.421828 0.445170

(0.792398) (1.79622) (1.20899) (1.63626) (1.30717) (1.40959)

Table 5

Lowest frequency parameters, o�; for C-F laminate ðM ¼ 8Þ

s ½0=90	� ½0=90=0	� ½0=90=0=90	� ½ð0=90Þ20
	� ½0=90	�6 ½ð0=90Þ30

	
1 �5

0.01 0.000311205 0.000704284 0.000474441 0.000641845 0.000513005 0.000553173

(0.000311322) (0.00070571) (0.000474995) (0.000642863) (0.000513569) (0.000553809)

0.05 0.00771633 0.0168268 0.0115482 0.0154734 0.0125031 0.0134661

(0.00778305) (0.0176427) (0.0118749) (0.0160716) (0.0128392) (0.0138452)

0.1 0.0301118 0.059896 0.0429367 0.0561013 0.0465455 0.0499804

(0.0311322) (0.070571) (0.0474995) (0.0642863) (0.0513569) (0.0553809)

0.2 0.110421 0.179206 0.139518 0.172043 0.150410 0.160387

(0.124529) (0.282283) (0.189998) (0.257145) (0.205428) (0.221524)
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classical laminate theory (CLT [1]) are simultaneously given in parentheses. The results presented
in these two tables calculated by our semi-analytical method are for M ¼ 8: These results are
accurate enough when compared to those for larger M: For example, for the stacking sequence
½0=90=0=90	� and s ¼ 0:2; the lowest frequency parameter o� of the C-C laminate equals 0.410732
for M ¼ 9; differing very slightly from that for M ¼ 8; as listed in Table 4.

From Tables 4 and 5, it is seen that for a cantilever laminate, the CLT results agree well with the
semi-analytical results even for s ¼ 0:05: However, for the C-C laminate, it is valid only for
s ¼ 0:01: Also, for different stacking sequences, the results of CLT deviate considerably from
those of the present method.

6. Conclusion

The free vibration of a cross-ply laminate in cylindrical bending is studied. In contrast to the
plate theories in which deformations or stresses are generally approximated in the thickness
direction, we assume an approximation in the plate plane using the differential quadrature
method. The present method overcomes the difficulty encountered in the traditional SSM when
treating with non-simply supported boundary conditions, such as the clamped and free-end
conditions. Moreover, since it is exactly solved along the thickness direction, the method is
suitable for analyzing arbitrarily thick laminates. Various numerical results, especially the ones for
non-simply supported thick laminates, are provided. And the authors hope them to serve as
benchmark solutions for verifying approximate theories.
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